CI Compass: The NSF Cyberinfrastructure (CI) Center of Excellence for Navigating the Major Facilities Data Lifecycle

Ewa Deelman
University of Southern California
Information Sciences Institute

NSF Advisory Committee for Cyberinfrastructure
April 28, 2022
NSF Large/Major Facilities

- Deliver data, modeling, computational, and physical capabilities to the broad research and engineering community, students, educators, and the public
- Highly diverse, complex, and heterogeneous
- Differ in types of data captured, scientific instruments used, data processing and analyses conducted, policies and methods for data sharing and use
- Rely on complex CI to the transform raw data into more interoperable and integration-ready data products that can be visualized, disseminated, and transformed into insights and knowledge.
Mission

CI Compass provides expertise and active support to cyberinfrastructure practitioners at NSF Major Facilities in order to accelerate the data lifecycle and ensure the integrity and effectiveness of the cyberinfrastructure upon which research and discovery depend.
CI Compass Services focus on Major Facilities’ Data Lifecycle

- **Data Capture**
 - Sensor or instrument e.g., GRAPEs, telescope, DOMs

- **Initial Processing**
 - Processor often at or near sensor site

- **Central Processing**
 - Main data center
 - Secondary data center

- **Storage, Curation, & Archiving**
 - Main data center
 - Secondary data center
 - Onsite storage

- **Data Access, Dissemination, & Visualization**

CROSS-CUTTING CI ELEMENTS
- Data Movement
- FAIR Data
- Identity Management

Target Users
- Scientists
- Educators
- Students
- Public

Evaluate CI plans, Help architect new solutions, Develop proofs of concept, Assess applicability/performance of existing solutions, Help leverage existing technologies
CI Compass Team

Funded by the National Science Foundation, Grant #2127548

RENCE
- Anirban Mandal (co-PI)
- Ilya Baldin
- Laura Christopherson
- Erik Scott

USC
- Ewa Deelman (PI)
- Mats Rynge
- Karan Vahi
- Loïc Pottier
- Rajiv Mayani
- Nicole Virdone
- Ciji Davis

Texas Tech University
Kerk Kee
Alex Olshansky

Indiana University
Angela Murillo (co-PI)

University of Notre Dame
- Jarek Nabrzyski (Co-PI)
- Joanne Fahey
- Charles Vardeman
- Mary Gohsman
- Christina Clark
- Don Brower

University of Utah
- Valerio Pascucci (Co-PI)
- Rob Ricci
- Steve Petruzza
- Giorgio Scorzelli

RRECI
- Automation, Resource Management, Workflows, Project Management

USC
- Resource Management, Networking, Clouds, Social Science, Evaluation

Texas Tech University
- Data Archiving

Communication & organization science

Indiana University
- Workforce development, Sensors, operations, Semantic technologies, Communications and Outreach

University of Utah
- Data management, visualization, clouds, CI deployment
CI Compass Team: Who we are

Deep expertise in several CI areas critical to the MFs
- Data management, data processing, visualization, archiving, semantic technologies
- Automation, resource management, workflows, sensors
- Networking, clouds, systems and infrastructure
- Large-scale CI deployment and operations, IdM
- Social science, understand the organization structures and culture of MFs

Experience in the management of CI projects
- Conceptualization, design phase, broad adoption
- Project Management and Evaluation
- Organizational science
- Communications & Outreach

Highly collaborative, strong history of working together and with the CS and CI Communities
- Many diverse community connections in astronomy, earth science, physics

Dedicated to the advancement of CI for science, engineering, and education
CI Compass activities: What we do

- Engagement
- Topical Working Groups
- Workshops: MF CI & Topical
- Student Program
- Other: Webinars, surveys, reports
- Internal: Planning, project mgmt
Overall CI Compass Strategy

1. Recognize the expertise, experience, and mission-focus of Major Facilities
2. Contribute knowledge and expertise to the MF DLC CI and enhance the overall NSF CI ecosystem.
3. Build expertise, not software
4. Build on existing knowledge, tools, community efforts
5. Leverage existing collaborations we are part of: PATH (Deelman, Sr. Personnel), ACCESS MATCH (user support, Deelman, Co-PI).
6. Build partnerships to leverage community expertise
 - Trusted CI: cybersecurity
 - Science Gateways Community Institute (SGCI): portals
 - Engagement and Performance Operations Center (EPOC): network utilization/optimization
 - Research Computing and Data Nexus, CI workforce development
 - Chameleon, cloud and edge-to-cloud experimentation and testing
 - Fabric, next generation networks experimentation and testing
7. Share knowledge, lessons learned, best practices with MFs, Partners, CI community
1-1 Engagements with MFs
- Identify a topic or topics that are important and not-yet fully solved by the Major Facility (MF)
- Form working groups/ embed in existing ones
- Conduct focused discussions, work together on particular challenges
- Work products: documents/papers, proofs of concept, schema implementations, demos
- Document and evaluate the collaboration and outcomes

Topical Working Groups
- Identify a topic that is important to a number of MFs
- Facilitate discussions, sessions at conferences, collect and share experiences, distill best practices

Community Building
- Share knowledge, build connections
- Host community activities: workshops, training
- Identify related efforts
- Help connect people, projects, and communities
- Collect information and disseminate information about the broad community activities and training opportunities
Engagements

<table>
<thead>
<tr>
<th>COMPLETED</th>
<th>ACTIVE</th>
<th>PLANNED/IN DISCUSSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecibo</td>
<td>NEON/NCAR</td>
<td>NCAR</td>
</tr>
<tr>
<td>ARF</td>
<td>LIGO</td>
<td>NAN/Midscale R-2</td>
</tr>
<tr>
<td>NEON</td>
<td>NOIRLAB</td>
<td>RDE/Midscale R-2</td>
</tr>
<tr>
<td>OOI</td>
<td>RCRV</td>
<td></td>
</tr>
<tr>
<td>RCRV</td>
<td>SAGE/GAGE</td>
<td></td>
</tr>
</tbody>
</table>

TIME SCALE

- A few months
- About 1 year
- More than 1 year

ENGAGEMENT

<table>
<thead>
<tr>
<th>ENGAGEMENT</th>
<th>PARTNERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arecibo</td>
<td>EPOC, TACC, Globus, UCF, IVOA</td>
</tr>
<tr>
<td>ARF, NOIRLab, RCRV</td>
<td>Trusted CI</td>
</tr>
<tr>
<td>SAGE/GAGE</td>
<td>Internet2</td>
</tr>
</tbody>
</table>

Credit: Arecibo Observatory
Regional Class Research Vessel (RCRV) Engagement: Shipboard CI/network plan review

January - March 2021

Planned RCRV vessels

“One of the primary concerns identified by the review was that the planned 1GbE switch ports in the ship’s computer lab should be supplemented with 10 GbE and higher to support deployment of visiting equipment with high-speed network interfaces.”

From Chris Romsos, RCRV, OSU: “Thank you for identifying this as something to address now before delivery of the vessel. We planned for future upgrades like this and have sufficient fiber between the network core and the computer lab to support the upgrade… Sikuliaq recently upgraded their edge switching throughout the vessel…. A nice piece of corroborating evidence there with Sikuliaq!”

Review of Network Architecture
The basic architecture of the on-board network is a switched hub-and-spoke model. The central hub
NEON/NCAR Engagement

Goals

• Combine NEON ecosystem data with NCAR atmospheric and land modeling capabilities
• Inspire new discoveries with integrated data from NEON and NCAR modeling
• Use cloud technologies to enable data modeling and wide community access

• Consulted on cloud technologies, including containers
• Helped with container testing
• Consulted on FAIR data and visualization
• Learned about data management challenges for computational models

https://www.neonscience.org/ncar-neon-community-collaborations

NCAR-NEON Data CI Pilot, ABBY, 2018-2021

FIELD SITE

Abby Road NEON / ABBY

DOi 10.48443/m9ez-fy80

Data Themes

Science Team
Terrestrial Instrumented Systems (TIS)

Scientific Keywords

carbon dioxide carbon flux
NCAR water vapor
atmospheric fluxes
Community Land Model (CLM)
Project goal: Develop a Common Cloud Platform (CCP) for ingestion, archiving, curation, processing, and distribution of their data in a cloud environment in support of the combined SAGE/SAGE data services facility serving geodetic and seismic communities.

CI Compass: Provide advice on different WG areas related to their DLC; Review system design and performance limitations; Conduct research into and documentation of CI best practices for CCP architecture design; Co-design architectural documents and solutions for data access, data ingest and processing, migration, storage tiering, and archiving. Observe, learn, and document a complex MF CI migration into Cloud and institutional merge process.
SAGE/GAGE Common Cloud Platform (CCP)

- Developed a Cloud Provider Analysis document advising CCP on a range of potential commercial, academic, or hybrid solutions that could provide the CCP data services at the lowest cost over a span of 5+ years, with a focus on risks (Internal and Public versions)
- Developed technical reports with advice on Data Storage Architecture Considerations: Cloud storage optimization, Block/File/Object storage design concerns, Database Design for geospatial data, FAIR data.. (Internal and Public versions)
Proof of concept on use of Apache Flink for stream-based processing of Messages out of Apache Kafka

Making the Major Facilities Data Lifecycle FAIR

Charles Vardeman
Date Published: January 25, 2022

What is FAIR data?

The notion of the four foundational principles for “data” — Findability, Accessibility, Interoperability, and Reusability or “FAIR” — was proposed by Wilkinson et al. in “The FAIR Knowledge Informed Machine Learning [2], that integrates broader knowledge and context into the machine learning process. Specific attributes for each FAIR principle are contained in Table 1.

Last Edited: 07/01/2021

CI Compass Comments and Suggestions for Large Facility Cyberinfrastructure Design

Part 2: Data Storage Architecture Considerations

* In progress
CI Compass activities: Topical Working Groups

Identity Management Topical WG

- Disseminate IdM information
 - Quarterly meetings with speakers and discussions on topics relevant to MFs: e.g. CILogon
 - Issues of identifying data usage and enabling reporting

Cloud Infrastructure Topical WG

- Understand the current practices for clouds used by MFs
- Research alternative solutions and keep up to date with emerging cloud technologies
- Develop a general set of best practices that can inform the MFs

Workforce Development and FAIR data groups are being incubated based on CI4MFs workshop discussions
Community Workshops

Cyberinfrastructure for Major Facilities Workshop

Getting Together, Working Together

- Future of CI for MFs
- Cloud migration
- Making data FAIR
- CI workforce:
 - Developing and retaining talent
 - Developing resilience

- 108 participants, including 35 in person in Redondo Beach
- Report due at the end of May 2022
CI Compass activities: What we do

Funded by the National Science Foundation, Grant #2127548

Examples of Engagements
- NCAR Modeling with NECN Data (Nov 2020 - 21)
 Project goal: Combine NECN ecosystem data with NCAR modeling capabilities to enable new discoveries.
 Use cloud technologies to enable data modeling and wide community access.

CI Compass: Provide advice on cloud technologies, including containers; hands-on help with container testing. Consult on FAIR aspects of data management.
Provide advice on data visualization with proofs of concept.
Current Working Groups (WGs):
 1. Data Envelopes
 2. Container/Cloud Computing
 3. Data Visualization

Making the Major Facilities Data Lifecycle FAIR

What is FAIR data?
The notion of the four foundational principles for “data” — Findability, Accessibility, interoperability, and Reuseability — “FAIR” — were proposed by the FAIR Guiding Principles for scientific data management and stewardship [1] and envisages a set of first principles for research communities with respect to the management and curation of scientific data. These principles were created from the point of view that data should be structured in a way that the data itself is “smart data” which can be queried for information relative to the four FAIR principles. That is, given the “i.d.” (id) of a data item, one can:
- Find the data
- Access the data
- Understand what the data is
- Be confident in the data

Table 1: The FAIR Guiding Principles

<table>
<thead>
<tr>
<th>Principle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Findable</td>
<td>The data is discoverable and accessible through appropriate metadata</td>
</tr>
<tr>
<td>Accessible</td>
<td>The data is available to users with the appropriate permissions</td>
</tr>
<tr>
<td>Interoperable</td>
<td>The data can be integrated with other data sets</td>
</tr>
<tr>
<td>Reusable</td>
<td>The data can be used to support new research questions</td>
</tr>
</tbody>
</table>

For more information, please visit the FAIR Guiding Principles website.
Undergraduate Student Fellowship Program

The program’s goal is to broaden student participation in CI research, development, deployment, and operations.

Year 1: Create a Pilot Framework
Creating program protocols, procedures, and guidelines including:
- Student recruitment, application, and selection,
- Student onboarding and training,
- Student activities with CI Compass, MFs, and other student interns, and
- Pilot program

February 28, 2022, Topic: Software Best Practices II, Containers!
Curriculum

Technical Skills Program

• Provides students experience in technical skills relevant to cyberinfrastructure including:
 • Python, Jupyter, Git, pytest, encryption, compression, validation,
 • Containers, Docker, virtual machines
 • Parallel and distributed computing, High Performance Computing
 • Cloud computing, IaaS, PaaS, SaaS, Chameleon cloud
 • Data Workflows, Pegasus

Research Skills Program

• Provides students experience researching MFs and the DLC and helps them understand the importance and context of MFs, and the related data and cyberinfrastructures
 • Student research the data lifecycle of specific MFs
 • Students learn about research and data ethics
 • Students hone their professional presentation skills through conducting MF DLC presentations to CI Compass and MF representatives
 • Students interact with MFs through MF guest speakers
Student Fellowship Program (Year 1 Pilot)

Undergraduate Students in CS: 5 at USC, 1 at UND
- Spring with CI Compass practice and directed research, Summer Internships: working on projects related to MFs

Years 2+ Hope to expand to external institutions and mentors, Summer’s at MFs

April 13, 2022 Student presentations with CI Compass and MF participants
Join the Conversation!

To learn more about CI Compass services, leadership, news, upcoming events and our resource library, please visit ci-compass.org

Contact the CI Compass Team with questions or requests by emailing contact@ci-compass.org

Connect on social media

Twitter
Follow @CICompass

LinkedIn
Connect with us linkedin.com/company/ci-compass

YouTube
Subscribe to our channel CI Compass