ACCESS and Major Facilities

Benedikt Riedel
UW-Madison
CI4MF
16 January 2024
Content Warning

These are my opinions, based on my experience and observations with ACCESS and its resource providers.
Context

• ACCESS - Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
 • Allocation, common user support, monitoring, etc. for NSF-funded HPC resources
 • PSC Bridges-2, SDSC’s Expanse, NCSA’s Delta, TACC’s Stampede, Purdue’s Anvil
 • Except for leadership class facility – Frontera, Vista, Horizon
 • No control of CI resources beyond allocating time – By design
 • Replaced XSEDE in 2022
 • INCITE is the DOE equivalent

• Major Facilities
 • Large scale (>$100M) NSF-funded research facilities
 • Multi-user, multi-science facilities
Context - MFs and Computing

• MFs require a certain level of “dedicated” CI resources to complete their mission
 • Who provides that CI depends a lot on the MF
 • “Normal” ACCESS model with an allocation and shared resources doesn’t fit
• There are many different MFs with different missions and operating principles
 • From “vertically integrated” (experiment to final result/paper) to a resource/data provider
• Question of mission: LHC vs. LSST
 • LHC has a science mission and is closed community
 • Vertically integrated from experiment to final result/paper
 • LHC experiments need to provide resources to create data products and perform data analysis
 • LSST is a science/discipline community MF
 • LSST is a resource like an ACCESS resource – Astronomers request time, request data products, etc.
 • LSST computing needs are focused on providing data products and alerts
 • ACCESS will support individual scientists using LSST data, not necessarily the “LSST collaboration”
What will we cover?

• Experience of MFs with ACCESS
• How could ACCESS and MFs work together
• What is missing in the ACCESS portfolio from a MF perspective
MFs & ACCESS – Computing Paradigms

• MFs are not “classical” HPC
 • Limited to no tightly coupled workloads that require >1 node
 • Ingeniously/pleasingly/embarrassingly parallel workloads
 • AI (and distributed AI training) is a recent development

• MFs are data-intensive and (mostly) distributed
 • MF workloads can be organized chaos – Flying the plane while replacing the engines
 • Big data in, big data out – MFs move data in and out for every workload
 • ACCESS orients data movement around “do computation locally and move output data once you are done”
MFs & ACCESS

• Non-standard user conundrum
 • Large userbase hidden behind MF, see LHC, IceCube, LIGO
 • MFs are odd balls in the NSF portfolio – Not your standard single-few-several PI projects
 • Using > 1 ACCESS resource needs to be well motivated

• Non-homogeneity of MF application
 • MF application behavior changes significantly between workloads
 • Containers, containers, and more containers

• Non-homogeneity of ACCESS resources
 • Every ACCESS resource is slightly different – Login (MFA), software stack, available resources, policies, etc.
 • Large complex software stacks and need to be moved around and are centrally managed
 • Takes MFs effort to integrate, is the effort worth it?
Working Together

Lots of Opportunity!
ACCESS resource providers have all resources to build CI for an MF
Working Together

Need a virtualization environment? - JetStream2, (CyVerse, Chamelon)
Need storage? - Open Storage Network, etc.
Need GPUs? – Delta, Expanse, Bridges-2, etc.
Need CPUs? – “All”
Working Together

• What is the hold up?
 • Mission
 • ACCESS are **multi-user HPC** facilities
 • Computing Paradigms
 • Funded through CISE/OAC and not MF directorates
 • NSF internal question of funding and funding cycles – MFs are multi-decade instruments vs. 5-10 years for ACCESS resources
 • “Another user”
 • MF comes in as a “user” – Multi-user facilities
 • MFs are 24/7/365 in terms of science operations – IceCube uptime is > 99% (over the 12 years)
 • Are MFs different then other NSF PIs? – Not to ACCESS
 • Question of support
 • MF researchers expect dedicated support that is more than what ACCESS providers are used to or can provide without additional resources
Working Together

• Better cross-resource support and homogeneity – Low Hanging Fruit
 • Why can I use apptainer/cvmfs on resource A and not B?
 • MFA policies more suited towards remote submission
 • Collaboration with ACCESS, PATh, and MFs

• AI Resources
 • Most MFs can’t afford/have access to/justify large scale AI hardware, i.e. more than single 8x A/H100 machine

• Hosting CI
 • ACCESS resource providers could be be hosts of MF CI
 • Example OSDF caches at SDSC, Internet2 backbone, used by LIGO, LHC, etc.
 • MF buys extra server(s) and hosted/adminged to ACCESS resource
 • Economies of scale
 • Requires dedicated support
What is missing in the ACCESS portfolio

• Archival
 • Economies of Scale
 • NERSC in DOE – One big tape archive is easier than 10 smaller ones
• Easier support for “distributed” workloads
 • Solutions for IceCube, LHC, and LIGO are there just not the personpower to implement them
• Common policies/setups across ACCESS sites
Thank you!

Questions?