DIRECTORATE FOR GEOSCIENCES OFFICE OF POLAR PROGRAMS

Designing Cyberinfrastructure for the Antarctic Research Vessel (ARV)

CI4MF 2024 18 January 2024

NSF ARV Team

Stephanie Short, ARV Program Lead Tim McGovern, ARV Program Manager Caitlin Jarecki, ARV Assistant Program Manager (USN PEO Ships) Mike Prince, ARV Project Manager Tim Howard, OPP/AIL Information Technology Support Manager

National Science Foundation WHERE DISCOVERIES BEGIN

Preliminary Design Rendering

Overview – Replacement for NBP

ARV Placemat with Specifications

MACHINERY SYSTEMS

AUXILIARY SYSTEMS

2 x 9.5 MW

1 x 1.9 MW

22.3 eMW

2 x 16.0 ft FPP

Qty 3 @ 205t

NOVEC and

Water Mist

60,000 gal

2.7 MWh

20 days

Azimuthing Podded

Propulsors

Propeller

A/C Plants

Bow Thrusters

Ship Power Plant

Fire Suppression

Mission Fuel Capacity

Ship Service Battery

Wastewater Holding

REFERENCE MISSIO	N
Duration	90 days
DIMENSION S	
Length, Overall	365.0 ft
Length, BP	349.0 ft
Beam, Overall	80.0 ft
Beam, WL	79.3 ft
Design Draft	32.5 ft
Working Deck Freeboard	13.0 ft
Displacement (Design Draft)	13,430 LT
Light Ship Weight (including margins)	9,790 LT
Deadweight	3, 640 LT

|--|

anpsciew	
Science	
Complement	

chin's Cro

PROVISIONS	
Freeze	90 days
Chill	90 days
Dry	90 days

29

55

Ibs

(Induding 2 ADA-

accessible berths)

A	V	A	TI	0	N

UAV Launch/Recovery	150 lbs
UAV Hangar	1,472 ft ²
Helicopter Landing	Bell 407
Hencopter Landing	Airbus H125

Antarctic Research Vessel (ARV) **Preliminary Design Placemat**

COMMUNICATIONS HF Transmit and Receive

Ku,	Ka, C, and UHF SATCOM
GM	DISS
INM	MARSAT
UHI	F/VHF LOS Comms
UAS	S Comms
Flee	t Broadband
NA	VIGATION
AIS	
ECD	IS
S&	X Band Radar
Ice	Radar
DG	90

ISSION EQUIPMENT	
Main Deck Granes	Maximum reach: 65ft 70.000 lbs @ 50ft
ortable Utility Crane	4,000 lbs @ 40ft
prward Crane	4,000 lbs @ 40ft
ern A-Frame de A-Frame	80,000 lbs slewing
leteorology Mast	1
tmospheric Mast	1
TD Hydroboom	Fast-acting, Reaches water level
ston Core LARS	40m
Iultibeam Sonar Suite	
on ar Dirop Keel	0 ft / 3 ft / 10 ft
ontainer Quantity	20 TEU

S

PERFORMANCE	
Open Water	
Maximum	> 17 kt
Cruise	11 kt
Quiet	8 kt
Ice	
Continuous 3 kt	> 4.5 ft + 1 ft snow
Continuous 6 kt	> 1.6 ft
Turning out	> 4.5 ft
Range	> 17,000 nm
Towing	
4 kt	25,000 lbs
6 kt	10,000 lbs

CLASSIFICATION

ABS ⊕A1 O ceanographic	⊕AMS
CCO-POLAR (-35°C,-45°C)	Ice Class PC:
⊕ACCU	CRC
Unrestricted service	R2
EED i- PH3	ENVIRO
HAB++(WB)	BW T+
ESS-LIBATTERY	HYBRID IEPS
ILM	UWILD
POT	

MISSION SPACES 8 in Science Hold Containers 12 on Weather Decks Lab Area, Total 8,263 ft 2 Aft Work Deck 7,724 ft2 42,571 ft3 Science Stores 170 ft. Side Deck Length Baltic Room Area 704 ft 2

10 ft HAZMAT Storage Science TEU Observation Deck **GIBBS & COX** A Leidos Company

November 7, 2023

214 ft²

1,163 ft²

General Arrangement – Profile

ARV Schedule

Next Steps:

- RFP and Selection of the Vessel Integrator to complete the project. (CY 24)
- Final Design Phase (CY 24-26)
- Final Design Review (CY 26)
- Appropriation and Approvals to start Construction Stage (CY 26)

CI & CS Project Guidance

- NSF Research Infrastructure Guide <u>https://www.nsf.gov/pubs/2021/nsf21107/nsf21107.pdf</u>
 - Section 6.3 Cyber Security Requirements
- ARV Performance Specification & Science Mission Requirements •
- **ARV Project Execution Plan** •
 - Section 7 and Appendix 13 Systems Engineering Plan includes Cyber IPT
 - Section 12 Cyber Infrastructure and Cyber Security

IPT/ WG Name	Responsibility	Members	Meeting Frequency
Systems Engineering IPT [SE IPT]	Coordinates SE activities: Requirements decomposition, allocation, traceability and compliance; technical budgets; KPPs, trade studies, interface management.	Led by SE. SME's from each IPT as required NSF Representative	Monthly Final Design through Construction Stage.
Cybersecurity IPT [CYBER IPT]	Coordination and review of the activities related to the development and implementation of Hardware (HW) and Software (SW) and network enclaves to satisfy Cybersecurity requirements.	Led by Cyber Lead, SMEs invited as required. NSF Representatives	Monthly Final Design through Construction Stage.

Table 1. IPT & WG Functions

www.nsf.gov/geo/opp

ARV Project Team – Cyber = Key Component

CI – Complex and Extensive CI Requirements

- Ship Operations Systems
 - Power Management
 - Propulsion Control
 - Navigation
 - Communications
 - Life Support
- Science Systems
 - Communications
 - Data management
 - Data Use, Display, Archive
 - Acoustic Systems
 - Met Sensors
 - Seawater Sensors
 - Ice and Weather
 - Remote Access & Outreach
- Guest Network
 - Personal Use & Comms

CI – Topside Arrangement – Comms & Sensors

10

OFFICE OF

POLAR PROGRAMS

CI – SATCOM Arrangements Planning for the Future

Figure 13: Recommended SATCOM SWaP-C Configuration

G&C recommends developing a design budget process using a Space, Weight, and Power and Cooling, commonly referred to as "SWaP-C," design based around the latest technology models" that could be used for ship design and construction.

CI – Acoustic Systems

ITEM NO.	QTY PROVIDED	DESCRIPTION
10	С	TRANSDUCER: DEEP WATER, MULTI-BEAM, 11
2	1	TRANSDUCER: DEEP WATER, MULTI-BEAM, 11
3	i	TRANSDUCER: SHALLOW WATER, MULTI-BEAK, 11, TX
- 4	10 i	TRANSDUCER: SHALLOW WATER, MULTI-BEAM, 1', RX
5	1 i i i	ACOUSTIC DOPPLER CURRENT PROFILER 38 KHZ
6	. i	ACOUSTIC DOPPLER CURRENT PROFILER 75 KHZ
7	÷.	ACOUSTIC DOPPLER CURRENT PROFILER 300 KHZ
8	Ť.	SUB-BOTTOM PROFILER, 3'
9	1	ACOUSTIC RELEASE TRANSPONDER 12 KHZ
10	T	user
11	2	SPEED LOG
12	2	19° CENTERBOARD SPARE
13	5	HYDROFHONE
14.	1.	FORWARD LOOKING CAMERA
15	t5	FORWARD LOCKING SONAR
16	1	WBESS TRANSDUCER 18 KHZ
17	1 t)	MBESS TRANSDUCER 38 KHZ
18	. tS	VBESS TRANSDUCER 70 KHZ
19	i.	VBESS TRANSDUCER 120 KHZ
20	40	URESS TRANSPLICER 200 KHZ

DETAIL 5-2B CENTERBOARD ARRANGEMENT

CI – Lab Spaces – Server Room

CI – Network Diagrams – Three Networks

www.nsf.gov/geo/opp

CI – Network Diagrams – Vessel Network

CI – Network Diagrams – Science Network

CI – Network Diagrams – Guest Network

Guest Network Boundary

OFFICE OF

POLAR PROGRAMS

The end result – fitting it all in...

Lessons Learned from other projects:

- Model the routing of cables and placement of equipment before starting installation.
 - 3D modeling down to very small (less than 1" diameter) cables
 - 3D modeling of all equipment foundations and locations
- Make sure all related equipment is identified and located in detailed construction drawings.
 - Finding a suitable location after construction has started is problematic and uses space allocated for some other use.
- Specify actual equipment (make/model) as late as possible in the construction process.
 - Design and model representative space, weight, power, cooling, connections and locations that will accommodate the eventual equipment selection. "SWaP-C" mentioned earlier.
 - Don't underestimate size, weight, power requirements in early design efforts
- Visualize and diagram all connections, integration and utilization of all Cyberinfrastructure as part of creating the design documentation.

Science & Cyber Community Engagement

- ARF (UNOLS) Cyber Working Group (CIWG)
 - Weekly Meetings
- ARV (UNOLS) Facilities Groups
 - Multibeam Advisory Committee (MAC)
 - UHDAS ADCP Data Acquisition
 - Shipboard Automated Meteorological and Oceanographic System (SAMOS)
 - Rolling Deck to Repository (R2R)
- Trusted CI Cyber Security Support
- Compass CI Cyber Infrastructure Support

Science Advisory Subcommittee (SASC) Reports: <u>https://future.usap.gov/arv-community-input/</u>

- Dr. Amy Leventer, (Chair) Colgate University
- Ms. Alice Doyle, UNOLS
- Dr. Carlos Moffatt, Univ of Delaware
- Dr. Deborah Steinberg, VIMS
- Dr. Kristin O'Brien, UAF; GEO AC Rep

Past Members

- Dr. Patricia Quinn, NOAA/PMEL
- Dr. Clare Reimers, OSU
- Dr. Bruce Appelgate, UCSD/Scripps

* Seeking nominations for 3 new members

Compass CI Review & Recommendations

CI Recommendations for the Antarctic Research Vessel (ARV) Author(s): Anirban Mandal, Ilya Baldin, Erik Scott, Ewa Deelman (CI Compass) Date: September 15, 2023

- 1. Develop canonical science use cases to help exercise the CI system. Develop a small set of validating science use cases, both current and projected, representative of the scientific experiments performed by the broader NSF Office of Polar Programs (OPP) researcher community.
 - a. Attach soft performance expectations and any other specific requirements (compute, network, storage) for each of the validating canonical science use cases.
- 2. Design "CI Cruise" to overlap with ship design reference mission to validate canonical science use cases. Develop a detailed plan for piggybacking design and evaluation of the shipboard CI capabilities with respect to the validating science use cases during the 90-day ship design reference missions. This can be referred to as "CI Cruise".
- 3. Develop and test on a small-scale twin of shipboard CI infrastructure. Develop a sandbox testing platform that is a small-scale twin of the planned CI for the research vessel on shore-side, and identify a small number of teams willing to test drive the science use cases in that small-scale twin
- 4. Develop vessel IT operational use cases.

Develop canonical operational use cases to design, test and validate the general IT operations that are required during all cruises. These use cases should exercise all IT functions in the ship, e.g. external comms, internal comms, PA, entertainment systems, ship alarms, CCTV, email, guest WiFi network, DNS and other network functions, etc.

Design Reference Mission (DRM) – CI Version

OFFICE OF POLAR PROGRAMS

Table 3: DRMC1 Thwaites/Pine Island Bay - Vessel Movement Daily Activities

Activity Start		Activity End		Activity	Location	Operation	Cruise days	Activity Type
Date	Shift	Date	Shift	Hours				
14-Dec	AM	14-Dec	AM	12	Punta Arenas, Chile (PUQ)	Depart	1	Hotel only
14-Dec	PM	20-Dec	PM	156	PUQ to Amundsen Embayment	Transit open ocean (Approx 1,590 nm)	1-7	Open water transit
21-Dec	AM	22-Dec	PM	48	Amundsen Embayment	CTD work	8-9	On station
23-Dec	AM	24-Dec	AM	36		Trace metal tow-fish	9-11	Acoustically quiet transit
24-Dec	PM	24-Dec	PM	12		Sea glider deployment	11	On station
25-Dec	AM	26-Dec	PM	48		Transit - first and second year ice	11 - 13	Icebreaking
27-Dec	AM	27-Dec	PM	24		Transit - first and second year ice	13 - 14	Icebreaking
28-Dec	AM	30-Dec	AM	60	1	CTD work	15 - 17	On station
30-Dec	PM	30-Dec	PM	12]	Sea glider deployments	17	On station
31-Dec	AM	31-Dec	AM	12		Transit - first and second year ice	18	Icebreaking
31-Dec	PM	31-Dec	PM	12		Mega-core/CTD	18	On station, DP
1-Jan	AM	1-Jan	AM	12		VMP transect	19	Acoustically quiet transit
1-Jan	PM	1-Jan	PM	12		Transit light ice	19	Ice transit

Compass CI Recommendation # 2 is to create a companion CI Cruise Scenario to evaluate the CI/CS requirements to support this Design Reference Mission.

Figure 1: Future Thwaites Glacier Cruise Track

Table 2: DRMC1 Thwaites/Pine Island Bay - Vessel Movement Summary

	Fair Weather Duration (days)					
Location	Southern Ocean	Amundsen Embayment	Amundsen Sea			
Open water transit	10	1.0	1.00			
Acoustically quiet transit	-	16	-			
Icebreaking	121	9	1			
On station		37.5	1.00			
On station, DP		10				
Deployment	-	3	(-)			
Hotel only	1	855	0.5			
Ice Transit	-	2	1			
Totals (90-day total mission duration)	11	77.5	1.5			

Next Steps

- Final Design Phase
 - Continue to develop the Ship-wide Network Diagram moving from a Logical Diagram to a Physical Diagram
 - Depicting cable type
 - Determining exact placement of individual equipment
 - Developing rack diagram
 - Continue Development of Cyber Security Controls
 - Security Control Traceability Matrix (SCTM) 5E1-402-P001
 - NIST SP 800-53 Rev 5
 - 356 controls shaping three networks' security stance
 - Sets subsequent phases up for cyber success
 - Continue reaching out to the Science and Cyber Community
 - Attendance at UNOLS CIWG Ship Ops and Tech Services meetings provide beneficial insight
 - Compass CI to review updated Network Diagrams and CI details
 - Trusted CI to review Cyber Security planning
 - NSF CI/CS program officers and USAP CI/CS expertise continued involvement in ARV project development.
- Construction Stage
 - Continue Design Development w/Ship Builder Source specific vendors and equipment
 - Installation of CI and Testing

Community Outreach and Public Info

POLAR PROGRAMS

New Antarctic Research Vessel (ARV)

New Antarctic

Ship Design

Current Science Miss Key performance parameters, operation found here.

Placemat

Science Mission Requirements (P

The ARV Preliminary Design Placemat is

ARV. It lists overall hull dimensions, inst

What's New?

New Antarctic Researc Vessel Advanced Icebreaking **Research Vessel Development Beginning**

New Antarct

Concept Design

Documents Library

· Conceptual Design Memo

Leidos ARV Conceptual Design Memo p

Concept Design Reports (Glosten Documents)

19136 Concept Design Report

- 19136 Science Berthing Study Project Memorandum a
- 19136.01 ARV Deck De-icing Systems Study Status Update 09/29/20 m
- 19136.01 ARV Ice Environment Study Status Update 09/25/20 a
- 19136.01 ARV Jumbo Piston Coring Study Status Update 09/25/20 pt 19136.01 - Manning Study p

Trade Off Studies

- 19136-000-01 ARV USCG Compliance Study Report p
- 19136-000-02 ARV Propulsor Study Report a
- 19136-000-03 ARV Power Systems Study Report a
- 19136-000-04 ARV Climate Study Report a
- 19136-000-05 ARV Seakeeping Study Report a
- 19136-000-06 ARV Ice Environment Study Report a
- 19136-000-07 ARV Green Ship Alternatives Report p
- 19136-000-08 ARV Autonomous Vehicle Handling Study Report a
- 19136-000-09 ARV Deck De-Icing Study Report a
- 19136-000-13 ARV Triple Propulsor Report a

Applicable UNOLS Guidelines and Reports

American Disabilities Act (ADA) Guidelines for UNOLS Vessels y 1.200 ft sq Refueling Fuel Cargo Capacity leidos 60.000 ex ay 18, 2022 FOR OFFICIAL USE ONLY Design placemat of the new Antarctic Research Vessel Credit: NSF, Leidos Inc.

supports a proau community o interests, organizations and research in

What is Future USAP?

Future USAP is a part of the United States Antarctic Program (USAP). Funded by the National Science Foundation, Future USAP is dedicated to long range investments in Antarctic infrastructure.

News and Updates

future.usap.gov/arv

Antarctic Research Vessel Summary

- ~20 years of sustained scientific demand
- Continued ability to support cutting edge NSF research for the next 40 years
- Enhanced capabilities over existing USAP research vessel
- Strong Teaming with Industry

OFFICE OF

POLAR PROGRAMS

Preliminary Design Rendering

Preliminary Design Rendering

