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What are exoplanets and why do we study their 
atmospheres?

● Understanding the atmospheric conditions 
is crucial in determining the planet’s 
habitability [1]

Credit: NASA/Wikimedia Commons/Joshua Krissansen-Totton

○ Find and quantify the constituents 
of the atmosphere and planet’s 
surface

● But there is only so much we can do with 
observations and the vast amount of data 
they produce

Credit: Halcyon Maps

● Exoplanets: Planets that orbit stars 
outside our solar system 

[1] Madhusudhan & Seager 2009, ApJ 707, 24.



How do we study their 
atmospheres?We analyse the light that passes through or comes from their atmospheres.

Credit: NASA, ESA, and L. Hustak (STScI).



How do we gain insights from it and the challenge?
Getting from raw spectrum to atmospheric composition is incredibly complex.

Raw Spectrum

Noisy telescope data

Physics Model

Radiative transfer 
equations

Parameter Search

Try millions of 
combinations

Best Match

Atmospheric properties

● Complex Physics: Must solve radiative transfer through entire atmosphere

● Many Parameters: Temperature, pressure, molecular abundances at many layers

● Statistical Sampling: Need millions of model runs to find best fit

● High Precision Required: Tiny signals need careful analysis

Hours to days per planet!
Computationally expensive
Limited for large surveys

Result: Very accurate results based on solid physics! [2]

[2] Himes et al. 2022, PSJ 3, 91.



Enter Machine Learning Surrogate Models
Simplified approximations of more complex, higher-order models

The main idea:
● Train neural network on thousands of synthetic atmospheric spectra

● Learn patterns between atmospheric properties and light signatures

● Make rapid predictions on new observations

● From hours to minutes! [3]

But can we maintain accuracy while gaining speed?

[3] Benneke & Seager 2012, ApJ 753, 100.



Our approach
● Step 1: Generate Training Data

○ Generated synthetic atmospheric spectra using Markov Chain Monte 

Carlo (MCMC) coupled with radiative transfer code, petitRADTRANS [3]

● Step 2: Train and Optimize Neural Network

○ Trained separate transmission- and emission only neural surrogate models using 

MARGE library on the synthetic spectra dataset [2] (Took us ~9.5 minutes)

○ Fine-tuned the model to handle noisy data and avoid generalization

● Step 3: Test on Real Exoplanets

○ Compared synthetic transmission and emission spectra predictions 

with observational data of exoplanets HD 189733 b and GJ 1214 b [4, 5]

[2] Himes et al. 2022, PSJ 3, 91. [3] Benneke & Seager 2012, ApJ 753, 100. [4] Kempton et al. 2023, Nature 620, 67. [5] Zhang et al. 2025, AJ 169, 38

Credit: petitRADTRANS



What did we find? (1 of 3)

Fig. 1: Transmission spectra for HD 189733 b (2.5-5.0 μm). 
Model (R2=0.50) vs. observed atmospheric absorption data.
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What did we find? (2 of 3)

Fig. 2: Emission spectra for HD 189733 b (2.5-5.0 μm). Model 
(R2=0.50) vs. observed thermal emission data.
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What did we find? (3 of 3)

Fig. 3: Emission spectrum for GJ 1214 b 
(5-12μm). Top: Best-fit model vs. 

observations. Bottom: Comparison of 
four modeling approaches (ensemble, 
physics-constrained, multi-smoothed, 

final prediction) with observational 
data
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What does this imply?

● Models successfully identify atmospheric molecules (CO₂, CO) in both emission 

and transmission observations.

● Results demonstrate surrogate models as fast, reliable tools for emission retrieval 

(~9.5 min vs. hours), with transmission modeling requiring further development.

[2] Himes et al. 2022, PSJ 3, 91. [3] Benneke & Seager 2012, ApJ 753, 100. [4] Kempton et al. 2023, Nature 620, 67. [5] Zhang et al. 2025, AJ 169, 38

● Surrogate models accurately recover emission spectra (R² = 0.85-0.89) but show 

moderate performance for transmission spectra (R² = 0.50).

● Physics-informed constraints (radiative transfer principles, molecular opacities) 

and ensemble methods improve model reliability.



What’s next?

● Incorporate physics-based constraints to improve transmission 

modeling and generalize across diverse exoplanet types.

● Work on model interpretability

● Develop user-friendly tools for astronomers



Thank you for your attention!

Any questions?



Bonus Slides!



Model Architecture

Neural Network Design:

● 2 Convolutional layers (pattern 

recognition)

● 4 Dense layers (decision making)

● ReLU activation functions

● Spectral-weighted loss function

Training Details:

● 14,000 total spectra (10k train, 2k 

validation, 2k test)

● 250 training epochs

● Channel-wise normalization

● Targeted regularization to prevent 

overfitting



Why is transmission spectroscopy harder?

Emission (Easier)

● Strong signal from hot planets

● Direct thermal glow

● Less atmospheric complexity

● More predictable patterns

Transmission (Harder)

● Weak signal - tiny atmospheric layer

● Complex scattering effects

● Cloud/haze contamination

● Limb temperature variations



Atmospheric characterization is the key to finding habitable worlds.

Biosignature Gases We Look For:

● Water (H₂O): Essential for life as we know it

● Oxygen (O₂): Produced by photosynthesis

● Ozone (O₃): Protects surface from UV 

radiation

● Methane (CH₄): Potential biological origin

Why Speed Matters:

● Prioritize targets for detailed follow-up

● Rapid assessment of potentially habitable 

worlds

● Enable systematic surveys of planetary 

populations


