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What are exoplanets and why do we study their
atmospheres?
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®  [1] Madhusudhan & Seager 2009, ApJ 707, 24. u Credit: NASA/Wikimedia Commons/Joshua Krissansen-Totton



How do we study their
0 1- mOS Rbc@n‘:/g§e?gh’r that passes through or comes from their atmospheres.

TRANSMISSION SPECTRUM: EARTH'S ATMOSPHERE
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Credit: NASA, ESA, ard L. Hustak (STScl).



How do we gain insights from it and the challenge”?

Getting from raw spectrum to atmospheric composition is incredibly complex.

Raw Spectrum Physics Model Parameter Search Best Match
Noisy telescope data Radiative fransfer Try millions of Atmospheric properties
equations combinations

i . . .Cosmpvlex Physicsf\ MUsf-'so,Iywe.;:gdiiq’rive transfer through entire atmosphere

° Many Parameters: Tempero’ruré:f%‘]b‘ressure, molecular abundances at many layers
e Statistical Sampling: Need miIIioh}:éﬁ:.c‘:_]c model runs to find best fit

e High Precision Required: Tiny signolé‘}rjje:ed careful analysis

Hours to days per planet!
Computationally-expensive
®  [2]Himes et al. 2022, PSJ 3, 9l. - Limited for |Qrge surveys

Result: Very accurate results based on sélidphysics! [2]



Enter Machine Learning Surrogate Models

Simplified approximations of more complex, higher-order models

The main idea:

e Train neural network on thousands of synthetic atmospheric spectra
e Learn patterns between atmospheric properties and light signatures
e Make rapid predictions on new observations > ’

e From hours to minutes! [3]

But can we maintain accuracy while ga

[3] Benneke & Seager 2012, ApJ 753, 100. Sh



Our approach

e Step I: Generate Training Data
o  Generated synthetic atmospheric spectra using Markov Chain Monte

Carlo (MCMC) coupled with radiative transfer code, petitRADTRANS [3]

° S’rep 2: Train and Optimize Neural Network Credit: petitRADTRANS

Tromed sepora’re transmission- and emission only neural surrogate models using
MARGE Ilbrory on the: synthe’rlc spectra dataset [2] (Took us ~9.5 minutes)

o  Fine-tuned the model to hcmdle noisy data and avoid generalization

e Step 3: Test on Real Exoplanets ‘ .
o Compared synthetic Tronsmiséidrjpnd emission spectra predictions

with observational data of exopldﬁéts HD 189733 b and GJ 1214 b [4, 5]

* [2] Himes et al. 2022, PSJ 3, 91. [3] Benneke & Seager 2012, ApJ 753, 100. [4TKempton et al. 2023, Nature 620, 67. [5] Zhang et al. 2025, AJ 169, 38



What did we find? (1 of 3)

Transmission Spectrum Analysis for HD189733b
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Fig. I: Transmission spectra for HD 189733 b (2.5-5.0 um).
Model (R?=0.50) vs. observed atmospheric absorption data.
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What did we find? (2 of 3)

Higher R?,
stronger Emission Spectrum Analysis for HD189733b
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Fig. 2: Emissibh'spec’rro for HD 189733 b (2.5-5.0 ym). Model
(R%=0.50) vs. observed thermal emission datai.



What did we find? (3 of 3)
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Emission Spectrum Analysis for GJ1214b
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Fig. 3: Emission spectrum for GJ 1214 b
(5-12um). Top: Best-fit model vs.
observations. Bottom: Comparison of
four modeling approaches (ensemble,
physics-constrained, mulfi-smoothed,
final prediction) with observational
data



What does this imply?

e Surrogate models accurately recover emission spectra (R* = 0.85-0.89) but show
moderate performance for fransmission spectra (R* = 0.50).
e Physics-informed constraints (radiative transfer principles, molecular opacities)

and ensemble methods improve model reliability.

ey N\odels successfully |denT|fy o’rmosphenc molecules (CO:, CO) in both emission

,ond transmission observcmons

e Results demonstrate surrogate models as fast, reliable tools for emission retrieval

(~9.5 min vs. hours), with Tronsmissioh,imodeling requiring further development.

* [2] Himes et al. 2022, PSJ 3, 91. [3] Benneke & Seager 2012, ApJ 753, 100. [4TKempton et al. 2023, Nature 620, 67. [5] Zhang et al. 2025, AJ 169, 38



What's next?

e Incorporate physics-based constraints to improve transmission
modeling and generalize across diverse exoplanet types.
e  Work on model interpretability

e Develop 'L‘js'}erv'—'ﬁie;rjdly_ tools for astronomers



Thank you for your attention!

Any questions?
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Bonus Slides!



Model Architecture

Neural Network Design: Training Details:
e 2 Convolutional layers (pattern e 14,000 total spectra (10k frain, 2k
Eleeleipliilely)) - validation, 2k test)
8 G 4Denseloyers '(d_e'cisi.on making) e 250 training epochs
o .‘ FéeLU activation func’rlons e Channel-wise normalization
. Spectral-weighted loss func’rioh{“i‘;‘»“ | e Targeted regularization to prevent

overfitting



Why is transmission spectroscopy harder?

Emission (Easier)

e Strong signol from hot planets

e Dlrec’r ’rhermol glow

e ‘Less o’rmosphenc complexrry

®  More predictable patterns

Transmission (Harder)

e  Weak signal - finy atmospheric layer
e Complex scattering effects
e Cloud/haze contamination

e Limb temperature variations



Atmospheric characterization is the key to finding habitable worlds.

Biosignature Gases We Look For:

Water (H.O): Essential for life as we know it

Oxygen (O:): Produced by photosynthesis

Dregel Os): Profects surface from UV
: '.‘l»’ddi'mbn bR

Methane (CH.): Pofential bIO|OgICG|OI’IgIn

Why Speed Matters:

e Prioritize targets for detailed follow-up

e Rapid assessment of potentially habitable
WelglelS

e Enable systematic surveys of planetary

populations



