Exploration of Workflow Management Systems Emerging Features from Users Perspectives

There has been a recent emergence of new workflow applications focused on data analytics and machine learning. This emergence has precipitated a change in the workflow management landscape, causing the development of new dataoriented workflow management systems (WMSs) in addition to the earlier standard of task-oriented WMSs.

In this paper, we summarize three general workflow use-cases and explore the unique requirements of each use-case in order to understand how WMSs from both workflow management models meet the requirements of each workflow use-case from the user's perspective. We analyze the applicability of the two models by carefully describing each model and by providing an examination of the different variations of WMSs that fall under the task driven model. To illustrate the strengths and weaknesses of each workflow management model, we summarize the key features of four production-ready WMSs: Pegasus, Makeflow, Apache Airflow, and Pachyderm.

To deepen our analysis of the four WMSs examined in this paper,we implement three real-world use-cases to highlight the specifications and features of each WMS. We present our final assessment of each WMS after considering the following factors: usability, performance, ease of deployment, and relevance. The purpose of this work is to offer insights from the user's perspective into the research challenges that WMSs currently face due to the evolving workflow landscape.

View Document